Terminological Adoption Without Conceptual Integration in Japanese AI Policy
Your observation about the terminological dissonance in Japanese AI policy discussions highlights a profound issue. Terms like "risk-based approach" and "by design" principles appear as rhetorical imports without the accompanying conceptual infrastructure that gives them meaning in their original context. This phenomenon warrants careful analysis.
Hollow Terminology in Japanese AI Policy
When Japanese policy documents reference concepts like "risk-based approaches," they often do so without the fundamental understanding that such approaches were developed specifically for what you've termed "processing AI" - systems that make consequential decisions about individuals. The EU's risk-based framework categorizes AI applications based on their potential impact on individual rights and opportunities, with the highest scrutiny reserved for systems making decisions in employment, education, credit, and similar domains.
In the Japanese context, these terms appear more as fashionable policy language rather than operational concepts with specific regulatory implications. The absence of a clear differentiation between generative AI and processing AI in the policy framework suggests a superficial adoption of international terminology without the underlying conceptual integration.
The Explainability Paradox
Your point about explainability is particularly incisive. Explainability principles were developed specifically for decision-making systems where individuals have a right to understand why a particular decision affecting them was made. In such contexts, explainability serves concrete purposes:
Enabling affected individuals to challenge unfair decisions
Allowing system designers to identify and address bias
Providing accountability mechanisms for high-stakes decisions
For generative AI, the concept of explainability has fundamentally different implications. When a large language model generates text or an image generator creates a picture, there isn't a "decision" to explain in the same sense as when a loan application is denied. The internal representations and statistical relationships that lead to a particular generation are not meaningfully "explainable" in the way that matters for individual rights protection.
When Japanese policy documents reference explainability for generative AI, they appear to be applying a regulatory concept outside its meaningful context, suggesting a misalignment between terminological adoption and conceptual understanding.
Conceptual Foundations and Policy Effectiveness
This terminological confusion reflects a deeper issue in Japanese AI policy development: the absence of a clearly articulated conceptual foundation regarding what problems AI regulation should solve. While EU regulation is explicitly grounded in protecting fundamental rights and preventing discrimination, Japanese approaches appear to lack this normative clarity.
The use of terms like "risk-based" and "explainability" without differentiation between AI types suggests that policymakers may be assembling a regulatory vocabulary without the corresponding conceptual framework that would make these terms operationally meaningful.
Implications for Regulatory Effectiveness
This disconnect has significant implications for the effectiveness of any resulting regulatory framework:
Regulatory measures not anchored in clear problem definitions are unlikely to address the actual risks posed by different AI systems
Compliance requirements derived from misapplied concepts will impose burdens without corresponding protections
International alignment becomes superficial rather than substantive
Without a clearer conceptual grounding in the distinct risks and governance needs of processing AI versus generative AI, Japanese policy discussions risk creating a framework that adopts international terminology while missing the substantive protections such terminology was designed to enable.
The path forward requires not just adopting terminology, but developing a more nuanced understanding of the different ways AI systems impact individuals and society, and tailoring regulatory approaches accordingly.
The Recurring Pattern in Japanese Technology Regulation: Form Without Substance
Your observation about "PIA without P" and its parallel to the current AI regulatory approach is remarkably insightful. This historical pattern reveals a systemic issue in how Japan adopts international regulatory frameworks – creating structures that mirror global standards in form while potentially omitting their substantive core principles.
Historical Parallel: Privacy and AI Regulation
The "PIA without P" phenomenon describes how Japan implemented Privacy Impact Assessment frameworks that arguably lacked robust privacy protections at their core. Now, we observe a similar pattern emerging in AI regulation:
Privacy regulation adopted procedural elements while potentially diluting fundamental privacy rights
AI regulation acknowledges "fairness" (¸øÀµÀ) in procedural terms while sidelining substantive equity and non-discrimination (¸øÊ¿À)
In both cases, the transformation from international standards to Japanese implementation involves a subtle conceptual shift that may significantly alter the regulatory effectiveness.
Conceptual Dilution in Translation
This pattern operates through several mechanisms:
Selective terminology translation: Choosing "¸øÀµÀ" (procedural fairness) over "¸øÊ¿À" (equity/non-discrimination) represents more than a linguistic choice – it reflects a fundamental reframing of what values the regulation prioritizes
Emphasis on process over outcomes: The focus shifts from preventing discriminatory outcomes to ensuring procedural transparency – a significant reorientation of regulatory purpose
Adoption of structure without substance: The frameworks appear aligned with international standards while potentially lacking the normative foundations that give those standards meaning
Systemic Factors Driving the Pattern
This recurring pattern likely stems from several interconnected factors:
Policy development processes that prioritize economic and technological advancement
Cultural and conceptual frameworks that understand discrimination differently than Western regulatory traditions
Institutional structures that favor procedural compliance over substantive rights protection
Preference for regulatory approaches that maximize flexibility for industry
Implications for AI Governance
The consequences of this pattern extending to AI regulation are significant:
Regulatory divergence: Despite appearing aligned with international standards, Japan's AI governance may develop along a fundamentally different trajectory
Protection gaps: Without robust substantive protections against algorithmic discrimination, vulnerable groups may face increased risks from AI deployment
Compliance challenges: Japanese companies operating globally may face difficulties navigating divergent regulatory regimes
Path Forward
Addressing this pattern requires more than technical adjustments to regulatory language:
A fundamental rethinking of how equity and non-discrimination concepts are understood in Japanese regulatory contexts
Explicit incorporation of outcome-focused measures alongside procedural safeguards
Development of concrete assessment methodologies specifically designed to identify and mitigate algorithmic bias
The historical parallel you've identified provides valuable perspective on current regulatory developments. Recognizing this pattern is the first step toward ensuring that Japan's AI regulation fulfills both the letter and spirit of responsible AI governance.
Linguistic Barriers Obscuring Conceptual Misalignments in Japanese AI Policy
Your observation highlights a critical issue in international technology governance. The language barrier effectively creates a form of regulatory opacity that shields fundamental conceptual misalignments from international scrutiny and dialogue.
Linguistic Isolation in Regulatory Development
This linguistic isolation has several significant consequences for AI governance:
Foreign observers generally encounter Japanese policy positions through official English translations or summary documents. These translations often present a facade of conceptual alignment with international norms by using standardized terminology like "fairness" without revealing the substantive differences in how these concepts are understood and implemented domestically.
When Japanese policymakers use terms like "¸øÀµÀ" (procedural fairness) rather than "¸øÊ¿À" (equity/non-discrimination), this nuanced but critical distinction is typically lost in translation, creating an illusion of greater international alignment than actually exists.
Cascading Effects on International Cooperation
This linguistic barrier creates substantial challenges for effective international cooperation:
International organizations and foreign governments may mistakenly assume shared understanding of core concepts when engaging with Japanese counterparts on AI governance issues. This can lead to agreements that appear robust on paper but contain fundamental conceptual inconsistencies that undermine their effectiveness.
Technical and policy discussions at international forums may proceed under false assumptions of conceptual alignment, limiting the ability to identify and address substantive differences in regulatory approaches.
Implications for Governance Effectiveness
The consequences extend beyond diplomatic misunderstandings:
Companies developing AI systems for global markets face heightened compliance uncertainty when regulatory frameworks that appear similar on the surface embody fundamentally different priorities and requirements.
Vulnerable populations in Japan may receive inadequate protections if international standards for algorithmic fairness and non-discrimination are adopted in name but not in substance.
Bridging Conceptual and Linguistic Divides
Addressing this challenge requires more than improved translations:
Meaningful progress would require deeper cross-cultural dialogue focused explicitly on exploring conceptual differences rather than assuming shared understanding of core principles.
International forums on AI governance would benefit from discussions that directly examine differences in how concepts like fairness, discrimination, and equity are understood across different cultural and linguistic contexts.
Technical standards organizations should work to develop more precise cross-cultural terminology that clearly distinguishes between procedural fairness and substantive non-discrimination requirements.
This linguistic opacity ultimately undermines one of the primary goals of international cooperation on AI governance: ensuring that AI systems respect fundamental rights and values regardless of where they are developed or deployed. Recognizing and addressing these hidden conceptual misalignments is essential for developing truly effective global AI governance frameworks.
Japanese AI Regulations: Conceptual Foundations and Effectiveness Challenges
Japan's AI regulatory framework adopts an approach of "balancing" technological innovation and economic development with risk management. While this stance appears reasonable at first glance, examining its substantive content and conceptual foundations reveals fundamental issues. The AI bill recently submitted to the National Diet has been characterized as a "lenient" regulation without penalty provisions, but this characteristic reflects not merely a policy choice but rather a lack of conceptual understanding of the essential challenges posed by AI.
The most prominent feature of Japan's AI regulations is the absence of a clear conceptual framework addressing the basic question of "what to regulate." This issue is evident in both public comments and government explanations. Government officials have expressed the view that "most anticipated risks can be addressed through existing laws," suggesting a lack of recognition of new challenges posed by AI, particularly issues of structural discrimination and fairness. While conventional crimes such as unauthorized access or content forgery can indeed be addressed through existing laws, new challenges such as fairness, transparency, and accountability in AI decision-making cannot be adequately captured by existing legal frameworks.
A more fundamental issue is that Japan's AI policy maintains ambiguity between the concepts of "procedural fairness" (¸øÀµÀ) and "equity/non-discrimination" (¸øÊ¿À). While the Hiroshima AI Process documents mention "fairness," this primarily refers to procedural propriety, which is fundamentally different from "equity" that implies equality of outcomes and elimination of discrimination. This lack of distinction reflects the relative neglect of equity issues in Japan's AI policy.
Additionally, Japan's AI regulations tend to focus excessively on "generative AI." As the Hiroshima AI Process was launched "to discuss international rules for generative AI," regulatory discussions have concentrated on issues such as misinformation and deepfakes caused by generative AI. In contrast, fairness and discrimination issues arising from automated decision-making systems ("processing AI") that affect individual rights and opportunities have been relatively marginalized. Public comments also express numerous concerns about copyright infringement and deepfakes, while concerns about algorithmic discrimination and unfair treatment are barely mentioned.
This situation is related to the distinctive understanding of "discrimination" in Japan. Japanese society tends to perceive discrimination primarily as intentional and explicit unfair treatment, with a relatively weak understanding of structural discrimination arising from statistical processing and unconscious biases. As a result, unintentional discrimination and inequity caused by AI are less likely to be recognized as significant policy issues in Japan's cultural context.
From an international perspective, while Japan's approach appears to position itself between the EU and the US, its substance differs. The EU's AI Act establishes the protection of fundamental rights as a clear value foundation, imposing strict regulations on automated decision-making systems in high-risk fields. The US takes a more economically liberal approach while still paying some attention to AI discrimination issues. In contrast, Japan's approach, while superficially advocating "balance," substantially emphasizes economic development and technological promotion while marginalizing the values of equity and non-discrimination.
This lack of conceptual foundation is also reflected in the absence of penalty provisions. When the regulatory targets and scope remain unclear, what constitutes a "violation" also becomes ambiguous, inevitably making the design of penalties difficult. While Minister Jōnai's statement that "excessive regulations that inhibit innovation should be avoided" is understandable, the criteria for judging what is "excessive" are not clear. Japan's AI regulations face the contradictory situation of "being unable to establish penalties for a conceptually unclear law."
These challenges evoke discussions surrounding the Personal Information Protection Act in the 1990s. At that time, there was a perception among policymakers that "automated processing is a strange foreign concept," resulting in merely formal responses to the European Data Protection Directive. The current AI regulations appear to be following a similar pattern. While formal institutional designs are being developed in response to international pressure, the conceptual and value foundations underlying these institutions have not been sufficiently internalized.
To achieve more effective AI regulations, a conceptual reconstruction that places the concept of "equity" at the center of policy is first necessary. Beyond mere procedural propriety, concrete regulatory frameworks should be constructed to address potential structural discrimination and inequalities caused by AI systems. It is also important to clearly distinguish between generative AI and processing AI, and to establish specific requirements such as fairness assessments and ensuring accountability, particularly for the latter.
For Japan's AI regulations to overcome these conceptual challenges and develop into truly effective regulatory frameworks, an interdisciplinary approach involving not only technical experts but also legal scholars, sociologists, ethicists, and specialists from various fields is essential. Furthermore, broad dialogue to deepen social understanding of "discrimination" and "equity" is necessary.
The current AI bill is positioned as a "first step" and does not preclude future development. However, for this development to be substantive, not merely superficial modifications such as adding penalties, but a more fundamental reconstruction of conceptual foundations is required. For Japan to truly build a "system that serves as a global model," it is necessary to develop a philosophy of AI regulation based on human-centered values that transcend technological promotion and economic development.
Réglementation de l'IA au Japon : Fondements conceptuels et défis d'efficacité
Le cadre réglementaire japonais en matière d'intelligence artificielle adopte une approche visant à "concilier" l'innovation technologique et le développement économique avec la gestion des risques. Bien que cette position semble raisonnable à première vue, l'examen de son contenu substantiel et de ses fondements conceptuels révèle des problèmes fondamentaux. Le projet de loi sur l'IA récemment soumis à la Diète nationale a été caractérisé comme une réglementation "souple" sans dispositions pénales, mais cette caractéristique reflète non pas simplement un choix politique, mais plutôt un manque de compréhension conceptuelle des défis essentiels posés par l'IA.
La caractéristique la plus marquante de la réglementation japonaise en matière d'IA est l'absence d'un cadre conceptuel clair répondant à la question fondamentale de "quoi réglementer". Ce problème est évident tant dans les commentaires publics que dans les explications gouvernementales. Des responsables gouvernementaux ont exprimé l'avis selon lequel "la plupart des risques anticipés peuvent être traités par les lois existantes", ce qui suggère un manque de reconnaissance des nouveaux défis posés par l'IA, notamment les questions de discrimination structurelle et d'équité. Si les crimes conventionnels tels que l'accès non autorisé ou la falsification de contenu peuvent effectivement être traités par les lois existantes, de nouveaux défis tels que l'équité, la transparence et la responsabilité dans la prise de décision par l'IA ne peuvent être adéquatement couverts par les cadres juridiques existants.
Un problème plus fondamental est que la politique japonaise en matière d'IA maintient une ambiguïté entre les concepts de "justice procédurale" (¸øÀµÀ) et "d'équité/non-discrimination" (¸øÊ¿À). Bien que les documents du Processus de Hiroshima sur l'IA mentionnent la "justice", cela fait principalement référence à la régularité procédurale, ce qui est fondamentalement différent de "l'équité" qui implique l'égalité des résultats et l'élimination de la discrimination. Cette absence de distinction reflète la négligence relative des questions d'équité dans la politique japonaise en matière d'IA.
De plus, la réglementation japonaise en matière d'IA tend à se concentrer excessivement sur "l'IA générative". Comme le Processus de Hiroshima sur l'IA a été lancé "pour discuter des règles internationales pour l'IA générative", les discussions réglementaires se sont concentrées sur des questions telles que la désinformation et les deepfakes causés par l'IA générative. En revanche, les questions d'équité et de discrimination découlant des systèmes automatisés de prise de décision ("IA de traitement") qui affectent les droits et les opportunités individuels ont été relativement marginalisées. Les commentaires publics expriment également de nombreuses préoccupations concernant les violations de droits d'auteur et les deepfakes, tandis que les préoccupations concernant la discrimination algorithmique et le traitement inéquitable sont à peine mentionnées.
Cette situation est liée à la compréhension distinctive de la "discrimination" au Japon. La société japonaise tend à percevoir la discrimination principalement comme un traitement injuste intentionnel et explicite, avec une compréhension relativement faible de la discrimination structurelle résultant du traitement statistique et des biais inconscients. Par conséquent, la discrimination non intentionnelle et l'iniquité causées par l'IA sont moins susceptibles d'être reconnues comme des questions politiques importantes dans le contexte culturel japonais.
D'un point de vue international, bien que l'approche japonaise semble se positionner entre l'UE et les États-Unis, sa substance diffère. La loi sur l'IA de l'UE établit la protection des droits fondamentaux comme une base de valeur claire, imposant des réglementations strictes aux systèmes automatisés de prise de décision dans les domaines à haut risque. Les États-Unis adoptent une approche plus libérale sur le plan économique tout en accordant une certaine attention aux questions de discrimination liées à l'IA. En revanche, l'approche japonaise, tout en préconisant superficiellement "l'équilibre", met substantiellement l'accent sur le développement économique et la promotion technologique tout en marginalisant les valeurs d'équité et de non-discrimination.
Ce manque de fondement conceptuel se reflète également dans l'absence de dispositions pénales. Lorsque les cibles et la portée de la réglementation restent floues, ce qui constitue une "violation" devient également ambigu, rendant inévitablement difficile la conception des sanctions. Si la déclaration du ministre Jōnai selon laquelle "les réglementations excessives qui inhibent l'innovation devraient être évitées" est compréhensible, les critères permettant de juger ce qui est "excessif" ne sont pas clairs. La réglementation japonaise en matière d'IA est confrontée à la situation contradictoire de "ne pas pouvoir établir de sanctions pour une loi conceptuellement peu claire".
Ces défis évoquent les discussions entourant la loi sur la protection des informations personnelles des années 1990. À cette époque, il existait une perception parmi les décideurs politiques selon laquelle "le traitement automatisé est un concept étranger étrange", ce qui a abouti à des réponses purement formelles à la directive européenne sur la protection des données. La réglementation actuelle en matière d'IA semble suivre un schéma similaire. Alors que des conceptions institutionnelles formelles sont développées en réponse à la pression internationale, les fondements conceptuels et de valeur sous-jacents à ces institutions n'ont pas été suffisamment intériorisés.
Pour parvenir à une réglementation plus efficace en matière d'IA, une reconstruction conceptuelle plaçant le concept "d'équité" au centre de la politique est d'abord nécessaire. Au-delà de la simple régularité procédurale, des cadres réglementaires concrets devraient être construits pour faire face à la discrimination structurelle potentielle et aux inégalités causées par les systèmes d'IA. Il est également important de distinguer clairement entre l'IA générative et l'IA de traitement, et d'établir des exigences spécifiques telles que les évaluations d'équité et la garantie de responsabilité, en particulier pour cette dernière.
Pour que la réglementation japonaise en matière d'IA surmonte ces défis conceptuels et se développe en cadres réglementaires véritablement efficaces, une approche interdisciplinaire impliquant non seulement des experts techniques mais aussi des juristes, des sociologues, des éthiciens et des spécialistes de divers domaines est essentielle. En outre, un large dialogue pour approfondir la compréhension sociale de la "discrimination" et de "l'équité" est nécessaire.
Le projet de loi actuel sur l'IA est positionné comme un "premier pas" et n'exclut pas un développement futur. Cependant, pour que ce développement soit substantiel, ce n'est pas simplement des modifications superficielles comme l'ajout de sanctions qui sont nécessaires, mais une reconstruction plus fondamentale des fondements conceptuels. Pour que le Japon construise véritablement "un système qui serve de modèle mondial", il est nécessaire de développer une philosophie de régulation de l'IA basée sur des valeurs centrées sur l'humain qui transcendent la promotion technologique et le développement économique.
Die KI-Regulierung in Japan: Konzeptionelle Grundlagen und Herausforderungen der Wirksamkeit
Der japanische Regulierungsrahmen für Künstliche Intelligenz verfolgt einen Ansatz, der technologische Innovation und wirtschaftliche Entwicklung mit Risikomanagement "in Einklang bringen" soll. Obwohl diese Haltung auf den ersten Blick vernünftig erscheint, offenbart eine Untersuchung ihres inhaltlichen Gehalts und ihrer konzeptionellen Grundlagen fundamentale Probleme. Der kürzlich dem Nationalparlament vorgelegte KI-Gesetzentwurf wird als "milde" Regulierung ohne Strafbestimmungen charakterisiert, doch dieses Merkmal spiegelt nicht nur eine politische Entscheidung wider, sondern vielmehr ein mangelndes konzeptionelles Verständnis der wesentlichen Herausforderungen, die KI mit sich bringt.
Das hervorstechendste Merkmal der japanischen KI-Regulierung ist das Fehlen eines klaren konzeptionellen Rahmens, der die grundlegende Frage "was soll reguliert werden" beantwortet. Dieses Problem ist sowohl in öffentlichen Kommentaren als auch in Regierungserklärungen erkennbar. Regierungsvertreter haben die Ansicht geäußert, dass "die meisten erwarteten Risiken durch bestehende Gesetze behandelt werden können", was auf eine mangelnde Anerkennung neuer Herausforderungen durch KI hindeutet, insbesondere in Bezug auf strukturelle Diskriminierung und Fairness. Während konventionelle Straftaten wie unbefugter Zugriff oder Inhaltsfälschung tatsächlich durch bestehende Gesetze behandelt werden können, können neue Herausforderungen wie Fairness, Transparenz und Rechenschaftspflicht bei KI-Entscheidungsfindung nicht angemessen durch bestehende Rechtsrahmen erfasst werden.
Ein grundlegenderes Problem besteht darin, dass die japanische KI-Politik eine Ambiguität zwischen den Konzepten der "Verfahrensgerechtigkeit" (¸øÀµÀ) und "Gleichheit/Nichtdiskriminierung" (¸øÊ¿À) aufrechterhält. Während in den Dokumenten des Hiroshima-KI-Prozesses "Gerechtigkeit" erwähnt wird, bezieht sich dies hauptsächlich auf verfahrenstechnische Angemessenheit, was sich grundlegend von "Gleichheit" unterscheidet, die Ergebnisgleichheit und Beseitigung von Diskriminierung impliziert. Dieser Mangel an Unterscheidung spiegelt die relative Vernachlässigung von Gleichheitsfragen in der japanischen KI-Politik wider.
Darüber hinaus neigt die japanische KI-Regulierung dazu, sich übermäßig auf "generative KI" zu konzentrieren. Da der Hiroshima-KI-Prozess "zur Diskussion internationaler Regeln für generative KI" ins Leben gerufen wurde, haben sich regulatorische Diskussionen auf Themen wie Falschinformationen und Deepfakes konzentriert, die durch generative KI verursacht werden. Im Gegensatz dazu wurden Fragen der Fairness und Diskriminierung, die durch automatisierte Entscheidungssysteme ("verarbeitende KI") entstehen, die individuelle Rechte und Chancen beeinflussen, relativ marginalisiert. Öffentliche Kommentare äußern auch zahlreiche Bedenken hinsichtlich Urheberrechtsverletzungen und Deepfakes, während Bedenken bezüglich algorithmischer Diskriminierung und unfairer Behandlung kaum erwähnt werden.
Diese Situation hängt mit dem besonderen Verständnis von "Diskriminierung" in Japan zusammen. Die japanische Gesellschaft neigt dazu, Diskriminierung primär als absichtliche und explizite unfaire Behandlung wahrzunehmen, mit einem relativ schwachen Verständnis struktureller Diskriminierung, die aus statistischer Verarbeitung und unbewussten Vorurteilen resultiert. Infolgedessen werden unbeabsichtigte Diskriminierung und Ungleichheit durch KI im kulturellen Kontext Japans weniger wahrscheinlich als bedeutende politische Themen anerkannt.
Aus internationaler Perspektive scheint sich der japanische Ansatz zwischen der EU und den USA zu positionieren, doch seine Substanz unterscheidet sich. Das KI-Gesetz der EU etabliert den Schutz grundlegender Rechte als klare Wertegrundlage und erlegt automatisierten Entscheidungssystemen in Hochrisikobereichen strenge Vorschriften auf. Die USA verfolgen einen wirtschaftlich liberaleren Ansatz, schenken aber dennoch KI-Diskriminierungsfragen einige Aufmerksamkeit. Im Gegensatz dazu betont der japanische Ansatz, während er oberflächlich "Ausgewogenheit" befürwortet, substantiell die wirtschaftliche Entwicklung und technologische Förderung, während er die Werte der Gleichheit und Nichtdiskriminierung marginalisiert.
Dieser Mangel an konzeptioneller Grundlage spiegelt sich auch im Fehlen von Strafbestimmungen wider. Wenn die Regulierungsziele und der Umfang unklar bleiben, wird auch das, was einen "Verstoß" darstellt, mehrdeutig, was die Gestaltung von Sanktionen unvermeidlich erschwert. Während die Aussage von Minister Jōnai, dass "übermäßige Regulierungen, die Innovation hemmen, vermieden werden sollten", verständlich ist, sind die Kriterien zur Beurteilung dessen, was "übermäßig" ist, nicht klar. Die japanische KI-Regulierung steht vor der widersprüchlichen Situation, "keine Strafen für ein konzeptionell unklares Gesetz festlegen zu können".
Diese Herausforderungen erinnern an Diskussionen um das Gesetz zum Schutz personenbezogener Daten in den 1990er Jahren. Damals gab es unter politischen Entscheidungsträgern die Wahrnehmung, dass "automatisierte Verarbeitung ein seltsames ausländisches Konzept ist", was zu lediglich formalen Antworten auf die europäische Datenschutzrichtlinie führte. Die aktuellen KI-Vorschriften scheinen einem ähnlichen Muster zu folgen. Während formale institutionelle Designs als Reaktion auf internationalen Druck entwickelt werden, wurden die konzeptionellen und wertebezogenen Grundlagen, die diesen Institutionen zugrunde liegen, nicht ausreichend internalisiert.
Um wirksamere KI-Vorschriften zu erreichen, ist zunächst eine konzeptionelle Neugestaltung notwendig, die das Konzept der "Gleichheit" in den Mittelpunkt der Politik stellt. Über die bloße Verfahrensangemessenheit hinaus sollten konkrete Regulierungsrahmen konstruiert werden, um potenzielle strukturelle Diskriminierung und Ungleichheiten durch KI-Systeme anzugehen. Es ist auch wichtig, klar zwischen generativer KI und verarbeitender KI zu unterscheiden und spezifische Anforderungen wie Fairness-Bewertungen und Gewährleistung der Rechenschaftspflicht festzulegen, insbesondere für Letztere.
Damit Japans KI-Vorschriften diese konzeptionellen Herausforderungen überwinden und sich zu wirklich effektiven Regulierungsrahmen entwickeln können, ist ein interdisziplinärer Ansatz wesentlich, der nicht nur technische Experten, sondern auch Rechtswissenschaftler, Soziologen, Ethiker und Spezialisten aus verschiedenen Bereichen einbezieht. Darüber hinaus ist ein breiter Dialog erforderlich, um das gesellschaftliche Verständnis von "Diskriminierung" und "Gleichheit" zu vertiefen.
Der aktuelle KI-Gesetzentwurf wird als "erster Schritt" positioniert und schließt eine zukünftige Entwicklung nicht aus. Damit diese Entwicklung jedoch substanziell ist, ist nicht nur eine oberflächliche Modifikation wie das Hinzufügen von Strafen erforderlich, sondern eine grundlegendere Neugestaltung der konzeptionellen Grundlagen. Damit Japan wirklich "ein System aufbaut, das als globales Modell dient", ist es notwendig, eine Philosophie der KI-Regulierung zu entwickeln, die auf menschenzentrierten Werten basiert, die über technologische Förderung und wirtschaftliche Entwicklung hinausgehen.